Infinite Dimensional Chevalley Groups and Kac-moody Groups over Z

نویسنده

  • LISA CARBONE
چکیده

Let A be a symmetrizable generalized Cartan matrix. Let g be the corresponding Kac-Moody algebra. Let G(R) be Tits’ Kac-Moody group functor over commutative rings R associated to g. Then G(R) is given by five axioms KMG1-KMG5 which are natural extensions of the properties of Chevalley-Demazure group schemes. We give a construction of the Tits functor for symmetrizable Kac-Moody groups G using integrable highest weight modules for the corresponding Kac-Moody algebra and a Z-form of the universal enveloping algebra. This gives a construction of Kac-Moody groups G as infinite dimensional analogs of finite dimensional Chevalley groups. The integral form G(Z) is the value of the Tits functor over Z. We give an explicit construction of the Tits functor G(Z) using integrable highest weight modules for g and a Z-form of the universal enveloping algebra of g and we show that this construction satisfies the axioms KMG1-KMG5 of Tits. We prove a Bruhat decomposition G(Q) = G(Z)B(Q) over Q and we give several generating sets for G(Z), including two finite minimal generating sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presentation of Hyperbolic Kac–moody Groups over Rings

Tits has defined Kac–Moody and Steinberg groups over commutative rings, providing infinite dimensional analogues of the Chevalley–Demazure group schemes. Here we establish simple explicit presentations for all Steinberg and Kac–Moody groups whose Dynkin diagrams are hyperbolic and simply laced. Our presentations are analogues of the Curtis–Tits presentation of the finite groups of Lie type. Whe...

متن کامل

Case for support Unitary forms of Kac–Moody algebras and Kac–Moody groups

The proposed project is set in pure mathematics within the areas of infinite-dimensional Lie theory and geometric group theory. Its goal is to contribute to the structure theory of unitary forms (i.e., centralisers of Chevalley involutions) of Kac–Moody algebras and of Kac–Moody groups of indefinite type. The main emphasis of this project will be on finite-dimensional representations and on ide...

متن کامل

Integral Forms of Kac–moody Groups and Eisenstein Series in Low Dimensional Supergravity Theories

Kac–Moody groups G over R have been conjectured to occur as symmetry groups of supergravities in dimensions less than 3, and their integer forms G(Z) are conjecturally U– duality groups. Mathematical descriptions of G(Z), due to Tits, are functorial and not amenable to computation or applications. We construct Kac–Moody groups over R and Z using an analog of Chevalley’s constructions in finite ...

متن کامل

Integer Forms of Kac–moody Groups and Eisenstein Series in Low Dimensional Supergravity Theories

Abstract. Kac–Moody groups G over R have been conjectured to occur as symmetry groups of supergravities in dimensions less than 3, and their integer forms G(Z) are conjecturally U– duality groups. Mathematical descriptions of G(Z), due to Tits, are functorial and not amenable to computation or applications. We construct Kac–Moody groups over R and Z using an analog of Chevalley’s constructions ...

متن کامل

Polyhedral Realization of Crystal Bases for Generalized Kac-moody Algebras

In this paper, we give polyhedral realization of the crystal B(∞) of U− q (g) for the generalized Kac-Moody algebras. As applications, we give explicit descriptions of crystals for the generalized Kac-Moody algebras of rank 2, 3 and Monster Lie algebras. Introduction In his study of Conway and Norton’s Moonshine Conjecture [3] for the infinite dimensional Z-graded representation V ♮ of the Mons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012